qiime2+biom+qiime1获得16S物种丰度

我们知道,不管是16S等扩增子测序,还是宏基因组,最后最重要的结果,就是物种的丰度情况了,qiime2给出的16S丰度结果是一个计数,对于许多软件来说这是可用的,那么如果我们想获得一个直接的百分比数据应该怎样做呢?

继续阅读 →

纳米孔16S测序数据分析之blast/last/minimap2流程

最近有朋友和我交流纳米孔16S测序数据的分析,发现真的没有从头完成过一次这方面的数据分析,然后发现这方面的资料也比较少,于是学习一下,和大家分享。坦白说,牛津纳米孔测序技术在16S多样性研究方面还是有些不足的,只能说勉强够用,主要应用场景是在一些现场快速检测方面,主要是病原菌这种。但是,相信随着测序准确度的提高和分析软件的改进,相信它的应用会越来越多。感谢互联网的便利和分享精神,今天的我们可以方便地获得测序的原始数据,并可以自由进行分析。

继续阅读 →

使用纳米孔测序数据进行16S-DNA条形码研究的计算方法[综述]

近年来,已经开发出第三代测序技术,并已与前一种测序策略并行和互补地应用。尤其是,牛津纳米孔技术公司(ONT)推出了纳米孔测序技术,该技术已在分子生态学家中广为流行。纳米孔技术提供了低廉的价格,便携性和快速的测序通量。这项强大的技术最近已通过16S rRNA分析测试,显示出令人鼓舞的结果。但是,与以前的技术相比,缺乏专门用于分析纳米孔16S序列的生物信息学工具和标准。由于其显著的特征,研究人员最近开始在16S rRNA测序研究中对MinION的适用性进行评估,并获得了显蓍的结果。在这里,我们对应用于微生物组研究的MinION技术的最新进展进行了综述。

继续阅读 →

宏转录组学习笔记(二)

继续前面的学习,前面已经把软件安装完成,数据库准备好,下面就是分析的过程了,基本上按照原文的命令进行的,由于教程中没有给出tara_f135_full_megahit.fasta这个文件,这里我们就把这几个样本的组装提到了前面,自己组装获得这个序列,然后再进行物种注释。

继续阅读 →

宏转录组学习笔记(一)

前面提到,已经有家公司通过宏转录组(Metatranscriptomics)测序检测肠道微生物,面向消费者提供检测服务。对宏转录组充满了好奇,有这样的比方说,**宏基因组可以告诉我们这个微生物群落可能有什么样的功能(潜能),宏转录组就是告诉我们群落正在做什么**,相比宏基因组的眉毛胡子一把抓,宏转录组是更针对当下的结果。由于测序的目标序列少了很多,结果不是变态大,对计算机的配置要求也相对降低。苦于想学宏基因组暂时没有服务器的我,就退而求其次试试宏转录组了,相信不会让我失望。之前学习过单转录组数据的分析,一般的笔记本(双核,8g ram)扛了下来。鉴于中文网络上能找到的宏转录组教程基本没有,只在Github上搜索到两个,选其中一个学习下。

继续阅读 →